
2. daisy:320 (Fithen, William L.)

3. #refs

4. #refs

5. #refs

6. #refs

7. #refs

8. #refs

9. #refs

10. #refs

11. #refs

12. #refs

13. #refs

14. #refs

15. #refs

Follow the Rules Regarding Concurrency Management
William L. Fithen, Software Engineering Institute [vita2]

Copyright © 2005 Carnegie Mellon University

2005-10-03

Failure to follow proper concurrency management protocols can produce serious vulnerabilities.
Concurrent access to shared resources without using appropriate concurrency management mechanisms
produces hard-to-find vulnerabilities. Many "functions" that are necessary to use can introduce "time of
check/time of use" vulnerabilities.

Description

When multiple threads of control attempt to share the same resource but to not follow the appropriate
concurrency protection protocol, then any of the following are possible:

• Deadlock: one or more thread may become permanently blocked [Johansson 053].

• Loss of information: saved information is overwritten by another thread [Gong 034, Pugh 995,
Manson 016, Manson 057].

• Loss of integrity of information: information written by multiple threads may be arbitrarily
interlaced [Gong 038, Pugh 999, Manson 0110, Manson 0511].

• Loss of liveness: imbalance in access to shared resources by competing threads can cause
performance problems [Gong 0312, Pugh 9913, Manson 0114, Manson 0515].

Any of these can have security implications, sometimes manifest in apparent logic errors (decisions
made based on corrupt data).

Competing "Systems" (Time of Check/Time of Use)
This is the most frequently encountered subclass of concurrency-related vulnerabilities. Many of the
defects that produce these vulnerabilities are unavoidable due to limitations of the execution
environment (i.e., the absence of proper concurrency control mechanisms). A common mitigation tactic
is to minimize the time interval between check and use, but a more effective tactic is use a "check, use,
check" pattern that can often detect concurrency violations, though not prevent them.

Applicable Context

All of the following must be true:

• Multiple "systems" must be operating concurrently.

• At least two of those systems must use a shared resource (e.g., file, device, database table row).

• At least one of those systems must use the shared resource in any of the following ways:

• Without using any concurrency control mechanism. This includes the situation where no such
mechanism exists, such a conventional UNIX filesystems, causing corruption or confusion.

Follow the Rules Regarding Concurrency Management 1
ID: 332 | Versie: 8 | Datum: 4/04/06 14:23:35

daisy:320
#refs
#refs
#refs
#refs
#refs
#refs
#refs
#refs
#refs
#refs
#refs
#refs
#refs

• Using the right concurrency control mechanism incorrectly. This includes situations like not
using a consistent resource locking order across all systems (e.g., in databases), causing
deadlocks.

• Using the wrong concurrency control mechanism (even if it used correctly). This includes
situations where a give resource may support multiple concurrency control mechanisms that are
independent of one another (e.g., UNIX lockf() and flock()), causing corruption or confusion.

These defects are frequently referred to as time of check/time of use defects because APIs providing
access to the resource neither provide any concurrency control operations nor perform any implicit
concurrency control. In this case, a particular condition (e.g., availability of resource, resource attributes)
is checked at one point in time and later program actions are based on the result of that check, but the
condition could change at any time since no concurrency control mechanism guarantees the condition
did not change.

Competing Threads within a "System" (Races)
The second largest class of concurrency-related vulnerabilities is generated by defects in the sharing of
resources such as memory, devices, or files. The defect may be a design error associated with the
concurrency control mechanisms or with an implementation error such as not correctly using those
mechanisms. Caching errors can be considered a member of this class.

Strictly speaking, signal handling defects are not concurrency defects. Signal handlers are invoked
preemptively in the main thread of the process. Therefore, signal handlers are not really concurrently
executed. However, from the programmer's viewpoint, they mostly feel like concurrent execution, so we
classify them here, at least for now.

Applicable Context

All of the following must be true:

• A "system" must have multiple concurrently operating threads of control.

• Two or more of those threads must use a shared data object, device, or other resource.

• At least one thread must use the shared resource without using the appropriate concurrency control
mechanism correctly (or at all).

Impacts Being Mitigated
• Impact #1:

• Minimally: None.

• Maximally: Deadlock: one or more threads may become permanently blocked.

• Impact #2:

• Minimally: None.

• Maximally: Loss of information: saved information is overwritten by another thread.

• Impact #3:

• Minimally: None.

• Maximally: Loss of integrity of information: information written by multiple threads may be

Follow the Rules Regarding Concurrency Management 2
ID: 332 | Versie: 8 | Datum: 4/04/06 14:23:35

arbitrarily interlaced.

• Impact #4:

• Minimally: None.

• Maximally: Loss of liveness: imbalance in access to shared resources by competing threads can
cause performance problems.

Security Policies to be Preserved
• Policy #1

• Threads must not deadlock.

• Policy #2

• Information must not be lost.

• Policy #3

• Information must not be corrupted.

• Policy #4

• Acceptable performance must be maintained.

How to Recognize this Defect
• Concurrency defects are extremely difficult to recognize. There is no general purpose approach to

finding them.

Mitigation Advice

To Engineers:
• Efficacy: INFINITE

• The appropriate concurrency control mechanism must be used in the conventional way (assuming
there is one).

To Engineers:
• Efficacy: LOW

• Where no concurrency control mechanism is available, seek to minimize the interval between the
time of check and the time of use. Technically this does not correct the problem, but it can make the
error much more difficult to exploit.

References

[Bishop 96] Bishop, Matt & Dilger, Mike. "Checking for Race Conditions in File
Accesses." Computing Systems 9, 2 (1996): 131-152.

Follow the Rules Regarding Concurrency Management 3
ID: 332 | Versie: 8 | Datum: 4/04/06 14:23:35

17. http://ds9a.nl/futex-manpages/futex4.html

18. http://doi.acm.org/10.1145/376656.376806

20. http://doi.acm.org/10.1145/304065.304106

1. http://www.sei.cmu.edu/about/legal-permissions.html

[Gong 03] Gong, Li; Ellison, Gary; & Dageforde, Mary. Inside Java 2 Platform
Security: Architecture, API Design, and Implementation (2nd Edition).
Boston, MA: Addison-Wesley, 2003.

[Johansson 05] Johansson, Olof& Torvalds, Linus. Fix possible futex mmap_sem deadlock.
http://linux.bkbits.net:8080/linux-2.6/cset@421cfc11zFsK9gxvSJ2t__FCmuUd3Q
(2005). What is a futex17 anyway?

[Manson 01] Manson, J. & Pugh, W. "Core semantics of multithreaded Java," 29-38.
Proceedings of the 2001 Joint ACM-ISCOPE Conference on Java Grande.
Palo Alto, California, USA, 2001. New York, NY: ACM Press, 2001. DOI=
http://doi.acm.org/10.1145/376656.37680618.

[Manson 05] Manson, J.; Pugh, W.; & Adve, S. V. "The Java memory model," 378-391.
Proceedings of the 32nd ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. Long Beach, California, USA, January 12-14,
2005. New York, NY: ACM Press, 2005. DOI=
http://doi.acm.org/10.1145/1040305.1040336.

[Pugh 99] Pugh, W. "Fixing the Java memory model," 89-98. Proceedings of the ACM
1999 Conference on Java Grande. San Francisco, California, USA, June
12-14, 1999. New York, NY: ACM Press, 1999. DOI=
http://doi.acm.org/10.1145/304065.30410620.

[Viega 02] Viega, John & McGraw, Gary. Building Secure Software: How to Avoid
Security Problems the Right Way. Boston, MA: Addison-Wesley, 2002.

[VU#132110] Rafail, Jason. Vulnerability Note VU#132110: Apache HTTP Server
vulnerable to DoS race condition in the handling of short-lived connections.
http://www.kb.cert.org/vuls/id/132110 (2004).

SEI Copyright
Carnegie Mellon University SEI-authored documents are sponsored by the U.S. Department of Defense
under Contract FA8721-05-C-0003. Carnegie Mellon University retains copyrights in all material
produced under this contract. The U.S. Government retains a non-exclusive, royalty-free license to
publish or reproduce these documents, or allow others to do so, for U.S. Government purposes only
pursuant to the copyright license under the contract clause at 252.227-7013.

Permission to reproduce this document and to prepare derivative works from this document for internal
use is granted, provided the copyright and “No Warranty” statements are included with all reproductions
and derivative works.

For inquiries regarding reproducing this document or preparing derivative works of this document for
external and commercial use, including information about “Fair Use,” see the Permissions1 page on the
SEI web site. If you do not find the copyright information you need on this web site, please consult your
legal counsel for advice.

Follow the Rules Regarding Concurrency Management 4
ID: 332 | Versie: 8 | Datum: 4/04/06 14:23:35

http://linux.bkbits.net:8080/linux-2.6/cset@421cfc11zFsK9gxvSJ2t__FCmuUd3Q
http://ds9a.nl/futex-manpages/futex4.html
http://doi.acm.org/10.1145/376656.376806
http://doi.acm.org/10.1145/376656.376806
http://doi.acm.org/10.1145/1040305.1040336
http://doi.acm.org/10.1145/304065.304106
http://doi.acm.org/10.1145/304065.304106
http://www.kb.cert.org/vuls/id/132110
http://www.sei.cmu.edu/about/legal-permissions.html

Velden

Naam Waarde

Copyright Holder SEI

Velden

Naam Waarde

is-content-area-overview false

Content Areas Knowledge/Guidelines

SDLC Relevance Implementation

Workflow State Publishable

Follow the Rules Regarding Concurrency Management 5
ID: 332 | Versie: 8 | Datum: 4/04/06 14:23:35

